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Abstract 
 
This article is concerned with the contact mechanics of a functionally graded layer loaded by a frictional sliding flat 

punch. The coefficient of friction is assumed to be constant and the lower side of the graded layer is firmly attached to a 
rigid foundation. The graded, nonhomogeneous property of the medium is represented in terms of an exponential varia-
tion of the shear modulus, while Poisson’s ratio is taken to be constant. Based on the use of plane elasticity equations 
and the Fourier integral transform technique, the formulation of the current contact mechanics problem lends itself to a 
Cauchy-type singular integral equation of the second kind for the unknown contact pressure, which is solved numeri-
cally. As a result, the effects of several parameters, i.e., the material nonhomogeneity, the friction coefficient, the punch 
width, and Poisson’s ratio, on the distributions of the contact pressure and the in-plane surface stress component are 
presented. 
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1. Introduction 

Functionally graded materials have been increas-
ingly used in a wide range of modern engineering 
practices over the past decade, motivated by a number 
of technological advantages achievable from their 
attractive features of predetermined, continuous varia-
tions of thermophysical properties in the spatial do-
main [1]. In particular, in conjunction with such tai-
loring capability of material property gradation that 
could enhance the surface properties, resolution of 
various important and interesting issues related to 
contact responses entailing the graded, nonhomoge-
neous constituents is posing refreshing challenges. 
This is because the results of contact mechanics ana-
lyses could find broad and direct scientific and indus-
trial applications where the surface wear and damage 

due to sliding contact are a serious concern, as would 
be the case in the design of load transfer components 
or assemblages with the graded properties near and at 
the contact surfaces [2, 3].  

Among others, one of the earlier attempts con-
cerned with the problem of a frictionless rigid punch 
on a nonhomogeneous half-plane can be attributed to 
Bakirtas [4]; and rather recently, with the evolution of 
the functionally graded materials being extended to 
the field of tribological applications, notable contribu-
tions have been made by Suresh and his associates in 
a series of papers dealing with the contact mechanics 
of graded media. Specifically, Giannakopoulos and 
Suresh [5, 6] examined the axisymmetric problem of 
graded half-spaces subjected to frictionless indenters 
with different profiles, by considering the elastic 
modulus that varies with depth either as a power or an 
exponential function. Finite element and experimental 
analyses of spherical frictionless indentation of com-
positionally graded materials were also undertaken by 
Suresh et al. [7]. Subsequently, Suresh et al. [8] illus-
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trated that the controlled gradients in the mechanical 
properties of compositions and structures offer unique 
opportunities for the design of surfaces with im-
proved resistance to sliding-contact deformation and 
damage that are frequently encountered in the con-
ventional homogeneous substrate [9]. Similar results 
were observed by Jitcharoen et al. [10] such that the 
elastic-modulus-graded surfaces could alter the stress 
field around the punch, thereby suppressing the Hert-
zian cracking at the edges of the contact region. For a 
graded semi-infinite substrate possessing the elastic 
modulus that increases monotonically according to a 
power-law variation, the closed-form solution to the 
plane elasticity problem of a sliding rigid cylindrical 
punch was given by Giannakopoulos and Pallot [11]. 

Aizikovich et al. [12] studied the Hertzian contact 
problem for a rigid spherical indenter acting on both 
the layered and functionally graded half-spaces, and 
Guler and Erdogan [13, 14] evaluated the contact 
stress fields for the graded coatings bonded to homo-
geneous substrates. Guler and Erdogan [15] also ex-
amined the problem of contact between two deform-
able elastic bodies with graded coatings, while El-
Borgi et al. [16] discussed the frictionless receding 
contact of a functionally graded layer pressed against 
a homogeneous substrate. Ke and Wang [17, 18] util-
ized a multilayered model-based procedure for the 
two-dimensional contact analysis of graded coatings 
with arbitrary material property variations, in which 
the graded region was simulated as a stack of a num-
ber of sublayers with the shear modulus varying line-
arly in each of the sublayers and continuous at the 
subinterfaces. Most recently, the multilayered ap-
proach was equally applied by Liu et al. [19] in solv-
ing the axisymmetric frictionless contact problem of 
functionally graded materials. With the intention of 
providing some insights into the design of coatings, 
Stephens et al. [20] performed a finite element analy-
sis to investigate the initial yielding behavior in a hard 
coating/substrate system with functionally graded 
interface under the simplifying assumption of a fric-
tional Hertzian contact pressure profile, indicating the 
beneficial influence of gradients in yield strength or 
elastic modulus on the reliability of the coated system. 
Additional results that address the contact response of 
graded materials on the basis of the aforementioned 
Hertzian pressure distribution are to be found in [21-
23].  

The objective of the present article is to further in-
vestigate the problem of contact mechanics for a 

functionally graded layer loaded by a frictional slid-
ing flat punch. With the friction coefficient being 
constant, it is assumed that the lower side of the 
graded layer is fixed to a rigid foundation and the 
sliding motion of the punch is sufficiently slow to 
justify the disregarding of inertia effects. The plane 
elasticity equations are employed in formulating the 
proposed contact problem and the graded layer is 
treated as a nonhomogeneous medium. The corre-
sponding shear modulus is expressed in the form of 
an exponential function varying along the layer thick-
ness and Poisson’s ratio is taken to be constant. It 
now appears to be appropriate to remark that for the 
solutions to counterpart problems of contact mechan-
ics that involve a homogeneous layer bonded to or 
resting on a rigid foundation, one can refer to the 
previous works, for example, in [24-28] and other 
references quoted therein. Based on the Fourier inte-
gral transform method, a Cauchy-type singular inte-
gral equation of the second kind is derived for the 
unknown contact pressure. Numerical results are then 
provided to demonstrate how the distributions of the 
contact pressure and the in-plane component of the 
surface stress are affected by various material, loading, 
and geometric parameters of the graded layer sub-
jected to the sliding flat punch with friction.  
 

2. Problem statement and basic equations 

The problem under consideration is schematically 
illustrated in Fig. 1, where a functionally graded layer 
of thickness h is in contact with a rigid flat punch of 
width 2c and is firmly attached to a rigid foundation. 
The punch is pressed against the layer upper surface 
by a normal force P and slides slowly in the positive 
y-direction. A frictional tangential force µf P is devel-
oped at the contacting interface by Coulomb’s law of 
friction, with µf being the coefficient of friction. The 
material nonhomogeneity of this graded medium is 
represented by the shear modulus µ(x) that follows an 
exponential variation as  
 

o
o

1( ) , lnx hx e
h

β µ
µ µ β

µ
⎛ ⎞

= = ⎜ ⎟
⎝ ⎠

             (1) 

 
where µo and µh are shear moduli at the locations of 
upper and lower surfaces of the layer, respectively, β 
is the material gradation parameter and, largely to 
render the incumbent analysis tractable, the spatial 
variation of Poisson's ratio is assumed to be negligible 
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Fig. 1. Problem configuration for a functionally graded layer 
loaded by a frictional sliding flat punch. 

 
throughout the medium such that ν= constant.  

Upon denoting u(x,y) and v(x,y) as the displace-
ment components in the x- and y-directions, respec-
tively, a system of equilibrium equations governing 
the plane elastic behavior is given by  
 

2 2
2

2
2

1
u vu

x yxκ
⎛ ⎞∂ ∂

∇ + +⎜ ⎟
− ∂ ∂∂⎝ ⎠

 

(1 ) (3 ) 0
1

u v
x y

β κ κ
κ

⎡ ⎤∂ ∂
+ + + − =⎢ ⎥− ∂ ∂⎣ ⎦

      (2) 

2 2
2

2
2 0

1
v u v uv

x y x yy
β

κ
⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂

∇ + + + + =⎜ ⎟ ⎜ ⎟− ∂ ∂ ∂ ∂∂ ⎝ ⎠⎝ ⎠
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and the stress components can be evaluated from the 
constitutive relations 
 

o (1 ) (3 )
1

x

xx
e u v

x y

βµ
σ κ κ

κ
⎡ ⎤∂ ∂

= + + −⎢ ⎥− ∂ ∂⎣ ⎦
        (4) 
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βµ
σ κ κ

κ
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                    (6) 

 
where κ=3−4ν for the plane strain and κ=(3−ν)/ 
(1+ν) for the plane stress. 

The Fourier integral transform method is employed 
to solve the above governing field equations so that 
the general expressions for the displacement and 
stress components are readily obtained as  
 

4

1
2

jn x isy
j j

j

iu F m e ds
π

∞
−

−∞
=

= − ∑∫              (7) 
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1
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where s is the transform variable, i=(−1)1/2, Fj(s), 
j=1,..,4, are arbitrary unknowns, nj(s), j=1,..,4, are the 
roots of the characteristic equation 
 

( ) 22 2 2 23 0
1

n n s sκβ β
κ

−⎛ ⎞+ − + =⎜ ⎟+⎝ ⎠
         (12) 

 
from which it can be shown that  
 

1/ 22
2 3( 1)

2 4 1
j

jn s i sβ β κβ
κ

−⎛ ⎞= − + + − − ⎜ ⎟+⎝ ⎠
 

; Re( ) 0, 1,2jn j> =                 (13) 
1/ 22

2 3( 1)
2 4 1

j
jn s i sβ β κβ

κ
−⎛ ⎞= − − + + − ⎜ ⎟+⎝ ⎠

 

; Re( ) 0, 3,4jn j< =                 (14) 
 
and mj(s), j=1,..,4, are given for each root nj(s), j= 
1,..,4, as   
 

2 2( 1)( ) (1 )
[2 ( 1) ]

j j
j

j

n n s
m

n s
κ β κ

κ β
− + − +

=
+ −

         (15) 

 
In the contact problem at hand (see Fig. 1), a verti-

cal displacement is imposed a priori over the contact 
region, |y|<c, via the prescribed punch profile on the 
layer upper surface, with the tractions being unknown 
beneath the punch as  

 
o(0, ) , (0, ) (0, ) ;xy f xxu y y y y cδ τ µ σ= = <   (16) 

 
while the region outside the contact, |y|>c, is traction-
free and the layer is in full adhesion with a rigid 
foundation such that both the vertical and horizontal 
displacements are zero at its lower surface 
 

(0, ) 0, (0, ) 0 ;xx xyy y y cσ τ= = >          (17) 

( , ) 0, ( , ) 0 ;u h y v h y y= = < ∞             (18) 
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where δo is the indentation depth. In addition, the 
equilibrium condition should be satisfied as  
 

(0, )
c

c
xx y dy Pσ

−

= −∫                     (19) 

 
in which P is the resultant contact force.  

As can be inferred from the above, the fixed condi-
tions, Eq. (18), can be applied to eliminate the two out 
of the four unknowns, Fj(s), j=1,..,4, for the elastic 
field and the mixed conditions in Eqs. (16) and (17) 
would yield, in principle, a pair of integral equations 
for the remaining two unknowns.  
 

3. Integral equation for the contact mechanics 

The contact pressure distribution is to be deter-
mined from the requirement that the displacements 
developed at the layer upper surface due to the arbi-
trary unknown normal and tangential tractions in the 
contact region conform to the punch profile for the 
complete contact to be maintained. Hence, in deriving 
the integral equation that relates such surface dis-
placements to the unknown contact pressure distribu-
tion, the expressions for the displacements in the 
graded layer subjected to the fixed condition in Eq. 
(18) as well as the arbitrary tractions acting on the 
contact region should be obtained. After some alge-
braic manipulations, the corresponding displacements 
can be written in the form as  

 

11 12
1(0, ) ( ) ( ) ( ) ( )

2
isyu y N s s iN s s e dsσ τ

π

∞
−

−∞
⎡ ⎤= +⎣ ⎦∫   

 (20) 

21 22
1(0, ) ( ) ( ) ( ) ( )

2
isyv y iN s s N s s e dsσ τ

π

∞
−

−∞
⎡ ⎤= − +⎣ ⎦∫  

; y < ∞                    (21) 
 
where ( )sσ and ( )sτ are the Fourier-transformed 
normal and tangential tractions, respectively, on the 
upper surface of the layer 
 

( ) ( ) , ( ) ( )
c c

isr isr

c c
s r e dr s r e drσ σ τ τ

− −
= =∫ ∫    (22) 

 
and the functions Njk(s), j,k=1,2, are dependent on the 
elastic parameters of the graded medium and the Fou-
rier variable s as well. 

For the purpose of extracting the correct nature of 
singularities the current contact problem may have 

and excluding the possibility of rigid body displace-
ments, the displacements in Eqs. (20) and (21) are 
differentiated to yield  
 

[ 11
1(0, ) ( , ) ( )

2

c

c

u y i K y r r
y

σ
π −

∂
= −

∂ ∫     

]12 ( , ) ( ) ;K y r r dr yτ− < ∞      (23) 

[ 21
1(0, ) ( , ) ( )

2

c

c

v y K y r r
y

σ
π −

∂
= −

∂ ∫    

]22 ( , ) ( ) ;i K y r r dr yτ+ < ∞     (24) 
 
where the kernel functions, Kjk(y,r), j,k=1,2, are given 
by 

( )( , ) ( ) ; , 1,2is r y
jk jkK y r s N s e ds j k

∞
−

−∞
= =∫  (25) 

 
accompanied by the following asymptotic behavior of 
the integrands as the variable s tends to infinity: 
 

11 22 1lim ( ) lim ( )
s s

ss N s s N s N
s

∞

→∞ →∞
= =         (26) 

12 21 2lim ( ) lim ( )
s s

s N s s N s N∞

→∞ →∞
= =           (27) 

 
in which 1 o( 1) / 4N κ µ∞ = − + and 2 o( 1) / 4N κ µ∞ = − − . 

Upon separating the leading terms from the ker-
nels in Eq. (25) and making use of the Fourier repre-
sentation of generalized functions [29] 
 

0
cos ( ) ( )s r y ds r yπ δ

∞
− = −∫              (28) 

0

1sin ( )s r y ds
r y

∞
− =

−∫                   (29) 

 
in which δ(r−y) is the Dirac delta function, a pair of 
integral equations is obtained for the unknown trac-
tions ( )yσ and ( )yτ in the contact region as  
 

o o

1 ( ) 1 ( )
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r dr y
r y
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(0, ) ;v y y c
y
∂

= − <
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                 (31) 

 
provided the surface slope of the punch profile is 
prescribed, where kjk(y,r), j,k=1,2, are bounded ker-
nels expressed as   
 

1
0
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∞
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The fact that the punch slides along the layer upper 
surface in the presence of friction requires the follow-
ing relations to be held within the contact region:    
 

(0, ) ( ) ( ) ;xx y y p y y cσ σ= = − <           (34) 

(0, ) ( ) ( );xy fy y p y y cτ τ µ= = − <         (35) 
 
where p(y) is the unknown contact pressure. The for-
mulation of the contact problem is thus reduced to 
solving a Cauchy-type singular integral equation of 
the second kind for p(y) as  
 

1 1 ( )( )
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c

f
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p rp y dr
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κµ
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−
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o
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f
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µ
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( ) ;f y y c= <                         (36) 
 
in which the function f(y) is given by  
 

o4( ) (0, )
1

uf y y
y

µ
κ

∂
=

+ ∂
                    (37) 

 
and the contact pressure should be in equilibrium with 
the resultant contact force P such that  
 

( )
c

c
p y dy P

−
=∫                          (38) 

 

4. Solution of the integral equation 

Now that the dominant part of the integral equation 
is solely attributable to the Cauchy singular kernel 
1/(r−y), the contact pressure p(y) to be sought as the 
solution to the integral equation can be expressed as 

[30] 
 

( ) ( ) ( ) ( ) ;p y c y c y F y y cχ ω= − + <       (39) 
 
where χ and ω  are the constants to be specified and 
F(y) is an unknown bounded function.  

In the normalized interval, r=cη and y=cξ, the na-
ture of the contact pressure is characterized by the 
fundamental function that corresponds, in this case, to 
the weight function of Jacobi polynomials [31]. The 
contact pressure can, therefore, be approximated in 
terms of a series expansion  
 

( , )

0

( ) ( ) ( ),n n
n

p y w c P χ ωξ ξ
∞

=

= ∑     

( ) (1 ) (1 ) ; 1w χ ωξ ξ ξ ξ= − + <            (40) 
 
where cn, n≥0, are coefficients to be evaluated, 

( , ) ( )nP χ ω ξ are the Jacobi polynomials, and the physics 
of the flat punch problem dictates that both χ and ω 
should be negative and determined as    
 

1 1, 1, tan
1f

θ θ κχ ω θ
π π µ κ

+
= = − − = −

−
 

; 1 ( , ) 0χ ω− < <                     (41) 
 
from which it is noted that the values of χ and ω as 
the powers of stress singularity at the leading (y=c) 
and trailing (y=−c) edges of the punch, respectively, 
are functions of only the friction coefficient µf and 
Poisson’s ratio ν, as in the case of a homogeneous 
substrate under frictional contact [9]. 

With the surface slope of the flat punch being zero 
within the contact region via Eqs. (16) and (37), after 
substituting Eq. (40) into Eqs. (36) and (38), truncat-
ing the series at n=N, and using the properties of the 
Jacobi polynomials [32], the singular part of the inte-
gral equation can be regularized such that the expres-
sions in Eqs. (36) and (38) become  
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where the function ( )ng ξ is written as  
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o
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To recast the functional equations in (42) and (43) 

into solvable form, the orthogonality of ( , ) ( )nP χ ω ξ for 
χ+ω=−1 is utilized  
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so that a system of linear algebraic equations can be 
constructed to be solved for cn, 0≤n≤(N+1), as 
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together with the following identities: 
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Once the unknown coefficients, cn, are evaluated 

from the above system of equations, the contact stress 
or pressure distribution beneath the flat punch is de-
termined in a straightforward manner as 
 

1
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c
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Subsequently, as the additional quantity of primary 
interest, the expression for the in-plane surface stress 
component σyy(0,y) on the upper surface of the graded 
layer can be obtained from the constitutive relations 
in Eqs. (4) and (5) and Eq. (31) such that  
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where in particular, in the normalized interval r=cη 

and y=cξ, the second term on the right-hand side can 
be evaluated with the aid of the formula [31] 
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that has the recurrence relation as   
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5. Numerical results and discussion 

The integral equation in (36) is solved for various 
combinations of physical parameters (µo/µh, µf, 2c/h, 
ν) of the problem under the state of plane strain. A 
constant Poisson's ratio ν=0.3 is assumed, unless oth-  

 

 

 
 
Fig. 2. (a) Distributions of contact stress σxx(0,y)/σo and (b) 
in-plane stress σyy(0,y)/σo on the surface of the graded layer 
for different values of the shear modulus ratio µo/µh (µf=0.5, 
2c/h=0.4, ν=0.3, σo=P/2c). 



 H. J. Choi / Journal of Mechanical Science and Technology 23 (2009) 2703~2713 2709 
 

  

 

 
 
Fig. 3. (a) Distributions of contact stress σxx(0,y)/σo and (b) 
in-plane stress σyy(0,y)/σo on the surface of the graded layer 
for different values of the friction coefficient µf (µo/µh=0.2, 
2c/h=0.4, ν=0.3, σo=P/2c). 

 
erwise stated. The kernels in Eqs. (32) and (33) as the 
improper integrals are evaluated employing the 
Gauss-Legendre quadrature and the integrals in Eqs. 
(44) and (49) are evaluated on the basis of the Gauss-
Jacobi quadrature with sixty collocation points [33], 
together with a twelve-term expansion of the Jacobi 
polynomials in Eq. (40).  

The distributions of normalized contact pressure 
σxx(0,y)/σo and in-plane surface stress component 
σyy(0,y)/σo are plotted in Figs. 2a and 2b, respectively, 
for some values of the shear modulus ratio µo/µh, 
where µf=0.5, 2c/h=0.4, and σo=P/2c is the average 
contact pressure. In this case, the powers of stress 
singularity at the trailing (y=−c) and leading (y=c) 
edges of the flat punch determined from Eq. (41) are 
ω=−0.5452 and χ=−0.4548, respectively, which are 
reflected in Fig. 2a through the greater stress concen-
trations around the trailing edge of the punch. It can 
be further inferred from this figure that for the 
enlarged value of µo/µh that makes the layer stiffer 
beneath the punch, there also result in greater stress  

 

 
 
Fig. 4. (a) Distributions of contact stress σxx(0,y)/σo and (b) 
in-plane stress σyy(0,y)/σo on the surface of the graded layer 
for different values of the friction coefficient µf (µo/µh=5.0, 
2c/h=0.4, ν=0.3, σo=P/2c). 

 
concentrations around both the trailing and leading 
edges of the punch, while the magnitude of the con-
tact pressure is reduced around the contact center. The 
in-plane surface stress as illustrated in Fig. 2(b) 
clearly depicts that its magnitude is unbounded and 
discontinuous at both edges of the punch. As the 
shear modulus ratio increases, it is predictable that the 
in-plane surface stress behind the trailing edge (y<−c) 
is rendered more tensile, but more compressive in the 
remaining region of the layer upper surface (y>−c), 
with the relevance that the trailing edge is a more 
likely location of contact damage, possibly in the 
form of surface crack initiation and propagation, as 
was evidenced by the previous experimental observa-
tion [8]. 

The variations of contact stress distributions with 
the friction coefficient µf ranging from 0.0 to 1.0 and 
2c/h=0.4 are next examined in Figs. 3(a) and 3(b) for 
µo/µh=0.2 and in Figs. 4(a) and 4(b) for µo/µh=5.0. As 
the sliding contact is more frictional, the near-edge 
behavior in Figs. 3(a) and 4(a) delineates that for the  
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Fig. 5. (a) Distributions of contact stress σxx(0,y)/σo and (b) 
in-plane stress σyy(0,y)/σo on the surface of the graded layer 
for different values of the flat punch width 2c/h (µo/µh=0.5, 
µf=0.5, ν=0.3, σo=P/2c). 

 
given values of µo/µh, the stress concentration be-
comes greater in the vicinity of the trailing edge of the 
punch, while the stress relaxation is noted near the 
leading end. This is well correlated with the strength-
ened and weakened stress singularities that prevail at 
the trailing and leading edges, respectively, for the 
increased values of µf, as can be estimated from Eq. 
(41) such that (ω, χ)=(−0.5, −0.5) for µf=0.0 and (ω, 
χ)=(−0.5886, −0.4114) for µf=1.0. The aforemen-
tioned trend near the trailing edge in Figs. 3a and 4a is 
in parallel with that in Figs. 3b and 4b, in the sense 
that the increase in the friction coefficient may cause 
the in-plane surface stress to be totally tensile and 
unbounded behind the trailing edge and to be more 
compressive ahead of the trailing edge. On the other 
hand, when the upper side of the layer is stiffer as 
µo/µh=5.0, the frictionless punch, µf=0.0, is shown to 
give rise to the in-plane surface stress that is compres-
sive close to both edges of the punch.  

Figs. 5 and 6 illustrate the effects of the flat punch 
width relative to the layer thickness, 2c/h, on the con-  

 

 
 
Fig. 6. (a) Distributions of contact stress σxx(0,y)/σo and (b) 
in-plane stress σyy(0,y)/σo on the surface of the graded layer 
for different values of the flat punch width 2c/h (µo/µh=2.0, 
µf=0.5, ν=0.3, σo=P/2c). 

 
tact stress field for µo/µh=0.5 and µo/µh=2.0, respec-
tively, in which it is assumed that µf=0.5. Common 
features to be remarked of these two material combi-
nations are, as plotted in Figs. 5(a) and 6(a), the in-
creased magnitude of contact pressure within the 
contact region and the relieved stress concentrations 
near the edges of the punch for the greater punch 
width. Such a near-edge response is especially note-
worthy around the trailing edge of the punch. The 
results in Figs. 5(b) and 6(b) show, however, that the 
punch width 2c/h may affect the in-plane component 
of the surface stress in a different manner, depending 
on the values of the shear modulus ratio. Specifically, 
when µo/µh=0.5, the in-plane surface stress is seen to 
become less tensile behind the trailing edge for the 
greater punch width, whereas the reverse trend is 
observed when µo/µh= 2.0, with the possible implica-
tion that the contacting surface is likely to be less 
susceptible to the contact-induced surface damage 
near the trailing edge when the frictional punch of 
greater width acts on the less stiff side of the graded  
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Fig. 7. (a) Distributions of contact stress σxx(0,y)/σo and (b) 
in-plane stress σyy(0,y)/σo on the surface of the graded layer 
for different values of the Poisson’s ratio ν (µo/µh=0.2, 
µf=0.5, 2c/h=0.4, σo=P/2c). 

 
layer. 

Additional results are provided in Figs. 7 and 8 in 
order to gain an insight into how the range of Pois-
son’s ratio, 0.01≤ν≤0.49, affects the contact stress 
field for µo/µh=0.2 and µo/µh=5.0, respectively. To 
this end, it is specified that µf=0.5 and 2c/h=0.4. Of 
interest in this case is the more pronounced influence 
of Poisson’s ratio on the contact stress field for the 
punch that acts on the less stiff side of the graded 
layer as µo/µh=0.2. From the results in Figs. 7a and 8a, 
it is evident that with the increase in Poisson’s ratio, 
the region near the trailing edge is experiencing re-
lieved stress concentration, while the leading edge 
region is suffering from the opposite tendency of 
intensified stress concentration. The strength of stress 
singularity that decreases at the trailing edge (from 
ω=−0.5772 at ν=0.01 to ω=−0.5031 at ν=0.49) and 
increases at the leading edge (from χ=−0.4228 at 
ν=0.01 to χ=−0.4969 at ν=0.49) with Poisson’s ratio 
supports the foregoing statement. Figure 7b reveals 
that the in-plane surface stress behind the trailing  

 

 
 
Fig. 8. (a) Distributions of contact stress σxx(0,y)/σo and (b) 
in-plane stress σyy(0,y)/σo on the surface of the graded layer 
for different values of the Poisson’s ratio ν (µo/µh=5.0, 
µf=0.5, 2c/h=0.4, σo=P/2c). 

 
edge also becomes somewhat alleviated with the in-
creasing Poisson’s ratio. The fact that the layer with 
the greater Poisson’s ratio offers diminished restraint 
to the lateral deformation is deemed to be partly re-
sponsible for such stress relaxation, which is particu-
larly true for the graded layer under the frictional 
sliding contact on its less stiff side. The results in Fig. 
8b for µo/µh=5.0 indicate, however, that the in-plane 
surface stress behind the trailing edge is affected 
rather insignificantly by the values of Poisson’s ratio.  
 

6. Summary and closure 

The problem of frictional contact between a sliding 
flat punch and a functionally graded layer has been 
investigated, within the framework of plane elasticity. 
With the friction coefficient being constant, the lower 
side of the layer was assumed to be fixed to a rigid 
foundation. The nonhomogeneity of the graded layer 
was modeled in terms of an exponential variation of 
the shear modulus along the thickness direction, while 
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Poisson’s ratio was taken to be constant. The distribu-
tions of the contact pressure and the in-plane surface 
stress component were then obtained for various 
combinations of material, loading, and geometric 
parameters of the graded layer under the prescribed 
contact loading condition. As a result, it was illus-
trated that when the flat punch acts on the stiffer side 
of the graded layer or when the punch is more fric-
tional, the stress concentration tends to be intensified 
especially around the trailing edge of the punch and 
the in-plane surface stress may be rendered more 
tensile behind the trailing edge, implying the elevated 
vulnerability of the layer to the sliding-contact-
induced surface damage. On the other hand, the 
enlarged punch width relative to the layer thickness 
was shown to relieve the stress concentration near the 
trailing edge of the punch, although such an effect of 
the punch width on the in-plane surface stress may 
differ, depending on the values of the shear modulus 
ratio. It was further observed that the contact stress 
field is affected to a larger extent by Poisson’s ratio 
when the graded layer is subjected to the frictional 
sliding contact on its less stiff side, with the corre-
sponding in-plane surface stress as well as the stress 
concentration in the trailing edge region being attenu-
ated for the greater values of Poisson’s ratio. 
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